2024

(FYUGP)

(1st Semester)

**CHEMISTRY** 

( Minor )

Paper Code : CHEM.M-1 (T)

( Inorganic Chemistry—I : Atomic Structure and Chemical Bonding )

Full Marks: 75

Pass Marks: 40%

Time: 3 hours

( PART : B—DESCRIPTIVE )

( Marks: 50 )

The figures in the margin indicate full marks for the questions

- 1. (a) What quantum numbers reveal information about shape, energy and orientation of orbitals?
  - (b) Give the postulates of Bohr's model of atom. Give its applications. 3+4=7

3

I-M. MERITA

#### OR

| 2.    | (a)    | Write the electronic configurations of                                              |     |
|-------|--------|-------------------------------------------------------------------------------------|-----|
|       |        | the following atom/ion: 2+2= (i) Cr <sup>3+</sup>                                   | :4  |
|       |        | (ii) Ag                                                                             |     |
|       | (b)    | State and explain Heisenberg's uncertainty principle.                               | 3   |
|       | (c)    | Give the limitations of Bohr's model of hydrogen atom.                              | 3   |
| 3.    |        | What are the various factors that affect the electronegativity?                     | 3   |
|       | (b)    | Describe the general trend in the atomic radii along the period and down the group. | 3   |
|       | (c)    | Give the applications (any two) and limitations of Slater's rule.                   | 4   |
|       | ยสำเรา | The figures or the or <b>NO</b> conducte full or                                    |     |
| 4.    | (a)    | Explain, in detail, why the ionization energy of Be is more than that of B.         | 4   |
|       | (b)    | Discuss the effective nuclear charge and screening or shielding effect.             | 4   |
| T=\$+ |        | Write a short note on van der Waals' radius.                                        | 2   |
| L25/  | 81a    | ( Continue                                                                          | d ) |

| 5.   | (a) | Describe the MO energy level diagram of N <sub>2</sub> and find its bond order and magnetic character.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | (b) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E    |     | bodistri satinis or albe metishen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.   | (a) | Describe valence bond theory. Give its limitations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ě    | (b) | The central atom in the molecules of $CH_4$ , $NH_3$ and $H_2O$ involves $sp^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |     | hybridization of its valence shell orbitals. But the bond angles in these molecules are 109.5°, 107° and 104.5° respectively. Account for this.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | (c) | Draw the Lewis structure of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |     | (i) CCl <sub>4</sub> of a second treat the smill (second treat the second treat treat the second treat the second treat the second treat treat the second treat treat treat the second treat tre |
| 7.   | (a) | Explain with examples, the application of redox reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | (b) | Differentiate between electrode potential and standard electrode potential. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | (c) | Define the following terms: 1×3=3  (i) Redox reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |     | (ii) Oxidation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |     | (iii) Endpoint of titration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L25/ | 81a | (Turn Over)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# Describe the i November level distrain on the and into its bond out it and

| 8. | (a) | How will you predict anode and cathode in an electrochemical cell?                            |
|----|-----|-----------------------------------------------------------------------------------------------|
|    | (b) | Balance the following equation with oxidation number change method: 4                         |
|    |     | $FeS_2 + O_2 \longrightarrow Fe_2O_3 + SO_2$                                                  |
|    | (c) | Explain briefly the principles involved in the volumetric analysis. 4                         |
| 9. | (a) | Discuss in detail the salient features of valence shell electron pair repulsion theory.       |
|    | (b) | State Fajans' rules. Explain the consequences of polarization. 1+3=4                          |
|    | (c) | What do you know about coordinate-<br>covalent bond? 2                                        |
|    |     | 7 (a) Explai with AO ples the applic                                                          |
| 0. | (a) | Define hydrogen bonding. Discuss the different types of hydrogen bonding with examples. 1+4=5 |
|    | (b) | Derive de Broglie equation. Describe the significance of $\psi$ and $\psi^2$ . 2+3=5          |

noire \* \* \* moderat (m)

|                                         | Subject Code : Bs/CHEM.M-1 (T)                                                    |
|-----------------------------------------|-----------------------------------------------------------------------------------|
|                                         |                                                                                   |
|                                         | To be filled in by the Candidate                                                  |
| *************************************** | BA / BSc / BCom / BBA / BCA<br>1st Semester End Term<br>Examination, 2024 (FYUGP) |
|                                         | Subject                                                                           |
| -                                       | Paper                                                                             |

#### INSTRUCTIONS TO CANDIDATES

- The Booklet No. of this script should be quoted in the answer script meant for descriptive type questions and vice versa.
- 2. This paper should be ANSWERED FIRST and submitted within 1 (one) Hour of the commencement of the Examination.
- 3. While answering the questions of this booklet, any cutting, erasing, overwriting or furnishing more than one answer is prohibited. Any rough work, if required, should be done only on the main Answer Book. Instructions given in each question should be followed for answering that question only.

| Date                                     | e Stamp                    |         |       |
|------------------------------------------|----------------------------|---------|-------|
|                                          |                            |         |       |
|                                          |                            |         |       |
|                                          |                            |         |       |
| 24                                       |                            |         |       |
|                                          |                            |         |       |
| 3                                        |                            |         |       |
| ,                                        | 0.1                        |         |       |
| Т                                        | o be filled                |         | he    |
| 914 24                                   | Candio                     | iate    |       |
| BA/                                      | BSc / BCon                 | n / BBA | / BCA |
| 1st                                      | Semester                   | End     | Term  |
| 100                                      | Scincotor                  | Lilu    | ıcım  |
|                                          | nination, 20               |         |       |
| Exam                                     | nination, 20               | 24 (FYU | JGP)  |
| Exam                                     | nination, <b>20</b>        | 24 (FYI | UGP)  |
| Exam                                     | nination, 20               | 24 (FYI | UGP)  |
| Exam<br>Roll l<br>Regn                   | nination, <b>20</b>        | 24 (FYI | UGP)  |
| Exam<br>Roll l<br>Regn<br>Subje          | nination, <b>20</b> No  No | 24 (FYI | UGP)  |
| Exam<br>Roll l<br>Regn<br>Subje          | nination, <b>20</b> No     | 24 (FYI | UGP)  |
| Exam<br>Roll l<br>Regn<br>Subje<br>Paper | nination, <b>20</b> No  No | 24 (FYI | UGP)  |
| Exam<br>Roll l<br>Regn<br>Subje<br>Paper | nination, <b>20</b> No  No | 24 (FYI | UGP)  |
| Exam<br>Roll l<br>Regn<br>Subje<br>Paper | nination, 20  No  No  ect  | 24 (FYI | UGP)  |

Booklet No. A

Signature of Scrutiniser(s) Signature of Examiner(s)

Bs/CHEM.M-1 (17/81

problem and 2024 a diffw forledge A S (FYUGP) (1st Semester) CHEMISTRY (Minor) Paper Code: CHEM.M-1(T) ( Inorganic Chemistry—I : Atomic Structure and Chemical Bonding ) ( PART : A—OBJECTIVE ) ( Marks : 25 ) The figures in the margin indicate full marks for the questions SECTION—I ( Marks : 15 ) Put a Tick (1) mark against the correct answer in the brackets provided: 1×15=15 1. For each value of l, the number of m values are (a) (b) nl (c) 2l + 1

(d)

/81

n-1 ()

| 2. |                       | subshell<br>imum _ |                               |       |           | <i>l</i> = 2 | can    | acco | mmod  | late |
|----|-----------------------|--------------------|-------------------------------|-------|-----------|--------------|--------|------|-------|------|
| -  | (a)                   | 10                 | (                             | )     |           |              |        |      |       |      |
|    | (b)                   | 12                 | (,                            | )     |           |              |        |      |       |      |
|    | (c)                   | 36                 | (                             | )     |           |              |        |      |       |      |
|    | (d)                   | 54                 | $\mathfrak{t}_{\mathbb{P}^4}$ | .)    |           |              |        |      |       |      |
|    |                       | n gehrundt         |                               |       |           |              |        |      |       |      |
| 3. | Fe <sup>3</sup> -expl | has ained by       | five                          | uı    | npaired   | elec         | trons  | . It | can   | be   |
|    | (a)                   | Aufbau             | prir                          | cip   | le        | (            |        |      |       |      |
|    | (b)                   | Hund's             | rule                          | o sti | (         | ) (200       |        |      |       |      |
|    | (c)                   | Pauli's            | excl                          | usic  | on princ  | ciple        | (      | )    |       |      |
|    | (d)                   | Heisenl            | oerg'                         | s u   | ncertair  | ity pi       | incip  | le   | (     | )    |
|    |                       |                    |                               |       |           |              |        |      |       |      |
| 4. | Whi                   | ch has             | the 1                         | arg   | est first | ioni         | zation | enth | alpy? |      |
|    | (a)                   | Li                 | (                             | )     |           |              |        |      |       |      |
|    | (b)                   | Na                 | (                             | )     |           |              |        |      |       |      |
|    | (c)                   | K                  | (                             | )     |           |              |        |      |       |      |
|    | (d)                   | Rb                 | (                             | )     | ka [      |              |        |      |       |      |
|    | 10000000              |                    | (                             | ,     |           |              |        |      |       |      |

Bs/CHEM.M-1 (T)/81

| 5. | 02- | is | isoelectronic | with |
|----|-----|----|---------------|------|
|----|-----|----|---------------|------|

- (a) H<sub>2</sub> ()
- (b) N<sub>2</sub> ( )
- (c) F<sub>2</sub> ( )
- (d) S<sub>2</sub> ( )

### 6. The last in d-block elements goes to

- (a) nd ( )
- (b) (n-1)d ( )
- (c) np ()
- (d) (n-1)s ( )

## 7. The orbital angular momentum of an electron in 2s-orbital is

- (a)  $\pm \frac{1}{2} \frac{h}{2\pi}$  ( )
- $(b) + \frac{h}{2\pi} \qquad ( )$
- (c) zero ( ) ( ) ( ) ( ) ( )
- (d)  $\sqrt{2} \frac{h}{2\pi}$  ( )

Bs/CHEM.M-1 (T)/81

| 8. |     | numbe<br>he peri   |       |       |        | s pre | sen | t in | the | fifth po | eriod |  |
|----|-----|--------------------|-------|-------|--------|-------|-----|------|-----|----------|-------|--|
|    |     |                    |       |       |        |       |     |      |     |          |       |  |
|    | (a) | 8                  | (     | )     |        |       |     |      |     |          |       |  |
|    |     |                    |       |       |        |       |     |      |     | F2       |       |  |
|    | (b) | 10                 | (     | )     |        |       |     |      |     |          |       |  |
|    | (c) | 18                 | (     | )     |        |       |     |      |     |          |       |  |
|    |     | 510                | five  | * üv  |        |       |     |      |     |          |       |  |
|    | (d) | 32                 | (     | )     |        |       |     |      |     |          |       |  |
|    |     |                    |       |       |        |       |     |      |     |          |       |  |
|    |     |                    |       |       |        |       |     |      |     |          |       |  |
| 9. | Wh: | ich of t<br>p hybr | he fo | ollow | ving 1 | mole  |     | s is |     |          |       |  |
|    | (a) | BeCl <sub>2</sub>  |       | (     | )      |       |     |      |     |          |       |  |
|    | (b) | BeH <sub>2</sub>   |       | (     | )      |       |     |      |     |          |       |  |
|    | (c) | SnCl <sub>2</sub>  |       | (     | )      |       |     |      |     |          |       |  |

(d) BeF<sub>2</sub> ( )

| 10. | $sp^3$ | d <sup>2</sup> hybridization is observed in                  |       |
|-----|--------|--------------------------------------------------------------|-------|
|     |        |                                                              |       |
|     | (a)    | BrF ( ) amount to outstant                                   |       |
|     | (b)    | BrCl <sub>3</sub> and (10 ) and to will deduce daid          |       |
|     | (c)    | CIF <sub>3</sub> ( ) landro demo                             |       |
|     | (d)    | None of the above                                            |       |
|     |        |                                                              |       |
| 11. |        | eral overlapping of the two-half filled a<br>itals is called | tomic |
|     | (a)    | sigma bond ( )                                               |       |
|     | (b)    | covalent bond ( )                                            | (el)  |
|     | (c)    | pi bond ( )                                                  |       |
|     | (d)    | coordinate bond ( )                                          |       |
| Bs/ | CHEN   | M.M-1 (T)/81                                                 |       |

| 12. | The | square | value | of | Ψ | indicates |  |  |
|-----|-----|--------|-------|----|---|-----------|--|--|
|-----|-----|--------|-------|----|---|-----------|--|--|

(a) nature of electrons (1)

(b) high probability of finding electron

(c) empty orbital ( )

(d) None of the above ( )

# 13. The oxidation number of S in H<sub>2</sub>SO<sub>4</sub> is

(a) +5 ( ) bood empire (a)

(b) +4 ( ) brook tradevoo (d)

(c) +6 ( ) broad in (s)

(d) +2 ( ) ( ) brood steathroom (b)

| 14. | The standard | electrode | potential | of H <sup>+</sup> /F | I <sub>2</sub> electrode |
|-----|--------------|-----------|-----------|----------------------|--------------------------|
|     | is           | 101       |           |                      |                          |

(a) + 0·15 (b)

(b) 0.00 ( )

(c) -0·25 ( )

(d) -0·44 ( )

### 15. The equivalent weight of KMnO<sub>4</sub> is

(a) 152 ( )

(b) 45 ( )

(c) 31.6 ( )

(d) 63 ( )

Bs/CHEM.M-1 (T)/81

SECTION—II 14 shouldele per telle ( Marks: 10 )

Answer the following questions in brief:  $2\times5=10$ 

1. What do you mean by exclusion in Pauli's exclusion principle?

2. Define ionization potential and electronegativity of an element.

3. Define lattice energy. Give its importance.

4. What is Bent's rule?

5. Define normality of a solution.

\* \* \*