Ba/Bs/MAT/M1

2024

(FYUGP)

(1st Semester)

MATHEMATICS

(Minor)

Paper Code: MAT/M1

(Calculus)

Full Marks: 75 Pass Marks: 40%

Time: 3 hours

(PART : B—DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions

- 1. (a) Find the domain and range of the following functions: 3+3=6
 - (i) $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \frac{x^2}{1+x^2}$$

(ii) $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = -|x|

(b)	Let $f: A \rightarrow B$, $g: B \rightarrow A$ be two functions				
	such that $g \circ f = I_A$. Prove that f is $ - $				
	and g is onto function.				

4

OR

- 2. (a) Examine whether the given functions are bijective or not: 3+3=6
 - (i) $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = x^2 + 3$
 - (ii) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x-2}{x-3}$
 - (b) Let $f: A \to A$ be a function. If $f \circ f = I_A$, then prove that f is invertible and $f = f^{-1}$.

.

3. (a) Evaluate:

21/2

$$\lim_{x \to 0} \frac{e^{\frac{1}{x}}}{e^{\frac{1}{x}} + 1}$$

- (b) Let $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ for $x \neq 0$ and f(0) = 0. Prove f is continuous at 0. Using the ε - δ property of theorem. $2\frac{1}{2}$
 - (c) If a function f(x) is continuous in the closed interval [a, b] and $f(a) \neq f(b)$, then show that the function f(x) assumes all the values between f(a) and f(b).

5

OR

4. (a) Describe the types of discontinuities that a function may have. What type of discontinuity the function

$$f(x) \begin{cases} \frac{x^4 + 4x^3 + 2x}{\sin x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

have?

3

3

4

(b) A function f is defined as follows $f(x) = x^2 + 3x + 4$ on [1, 2]. Then show that f is continuous as well as uniformly continuous on [1, 2].

(c) Prove that-

- (i) the limit of a function at a point, if it exists, is unique;
- (ii) if $\lim_{x \to a} f(x) = l \text{ and } \lim_{x \to a} f(x) = l',$ then l = l'.

5. (a) If f and g are both differentiable at x and if $g(x) \neq 0$, then show that $\frac{f}{g}$ is differentiable at x and

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\frac{d}{dx}[f(x)] - f(x)\frac{d}{dx}[g(x)]}{[g(x)]^2}$$

(b) Evaluate:

(i) Lt
$$x \to 0$$
 $\frac{x e^x - \log(1+x)}{x^2}$

(ii) Lt
$$(\cos x)^{\cot^2 x}$$

OR

- **6.** (a) Obtain the multiple roots of $x^5 10x^2 + 15x 6 = 0$ and hence solve it completely.
 - (b) Show that the semi-vertical angle of a right circular cone of given surface area and maximum volume is $\sin^{-1}\left(\frac{1}{3}\right)$.
- 7. (a) Evaluate any two of the following: $3\times 2=6$ (i) $\int \tan^4 x \, dx$

(ii)
$$\int \frac{dx}{(x+1)\sqrt{x^2+1}}$$

(iii)
$$\int \frac{x}{1+\sin x} dx$$

(b) Test the convergence of the following:

$$(i) \int_{0}^{\infty} \frac{dx}{x^2 + 2x + 2}$$

(ii)
$$\int_{0}^{\infty} \frac{dx}{(x+1)(x+2)}$$

OR

8. (a) Evaluate any two of the following: 3×2=6

(i)
$$\int \frac{\sin x}{\sin (x-a)}$$

(ii) $\int e^{ax} \cos bx \, dx$

(iii)
$$\int \frac{1}{x^2 - a^2} dx$$

(b) Integrate the following:

$$2+2=4$$

(i)
$$\int \frac{dx}{x(a+b\log x)}$$

(ii) $\int \frac{\sin x + \cos x}{\sin x - \cos x} dx$

9. (a) Define a relation from a set A to set B. Hence if R be the relation of \mathbb{Z} defined by

$$R = \{ (a, b) : a \in \mathbb{Z}, b \in \mathbb{Z}, a^2 = b^2 \}$$

Find-

- (i) R;
- (ii) domain of R;
- (iii) range of R.

5

(b) If a function f is uniformly continuous in a certain interval I, then show that it is necessarily continuous on I.

OR

10. (a) If f(x) and $\phi(x)$ be two given functions of x capable of being expanded by Taylor's theorem and if

$$f(a) = \phi(a) = 0,$$

then show that

$$\operatorname{Lt}_{x \to a} \frac{f(x)}{\phi(x)} = \operatorname{Lt}_{x \to a} \frac{f'(x)}{\phi'(x)}$$

(b) Integrate:

$$\int \sin^{-1} \sqrt{\frac{x}{a+x}} \, dx$$

6

4

Subject Code : Ba/Bs/MAT/M1	Booklet No. A 21			
	Date Stamp			
To be filled in by the Candidate	Nes le			
BA / BSc / BCom / BBA / BCA 1st Semester End Term Examination, 2024 (FYUGP) Subject	ATTICE TO SECOND STATE OF THE SECOND STATE OF			
Paper	To be filled in by the Candidate			
INSTRUCTIONS TO CANDIDATES 1. The Booklet No. of this script should be quoted in the answer script meant for descriptive type questions and vice versa.	BA / BSc / BCom / BBA / BCA 1st Semester End Term Examination, 2024 (FYUGP)			
2. This paper should be ANSWERED FIRST and submitted within 1 (one) Hour of the commencement of the Examination.	Roll No			
3. While answering the questions of this booklet, any cutting, erasing, over-	Subject			

Signature of Scrutiniser(s)

only.

Signature of Examiner(s)

writing or furnishing more than one answer is prohibited. Any rough work, if required, should be done only on the main Answer Book. Instructions given in each question should be

followed for answering that question

Signature of Invigilator(s)

DESCRIPTIVE TYPE

Booklet No. B

2. If A = (1.2) B = (3.4) A = (3.4) = A A . . . (FYUGP) (1st Semester) MATHEMATICS (Minor) Paper Code: MAT/M1 (Calculus) (PART : A—OBJECTIVE) (Marks : 25) 118 40 Marks 100 The figures in the margin indicate full marks for the questions SECTION—I said benilebatt (3) (Marks : 10) Put a Tick (1) mark against the correct answer in the brackets provided: 1×10=10 1. The function $y = \cos x$ is defined for (a) deleted neighbourhood of a (a) $-1 \le x \le 1$ $(-\infty, -1]$ (δ to boothood gian botsleb (b) [1, ∞)) = (8) s to booch node visit batelsh (d) (d) deleted neighbourhood of $a(+\delta)$

/114

121

2.		= $\{1, 2\}$, $B = \{3, 4\}$, then the number of relations A into B is
	(a)	16 () 198890 ()
	(b)	8 () 3017ANS. VAM
	(c)	4 ()
	(d)	o () **********************************
3.		function $f(x) = x^n$ where n is a negative odd ger is
	(a)	defined for all x
	(b)	defined for $x = 0$ ()
	(c)	undefined for all x ()
	(d)	undefined for $x = 0$ ()
4.		union $[a-\delta, a[U]a, a+\delta]$ which is the same as $\delta, a+\delta$]~ $\{a\}$ is called
	(a)	deleted neighbourhood of a ()
	(b)	deleted neighbourhood of δ
	(c)	deleted neighbourhood of $a - \delta$ ()
	(d)	deleted neighbourhood of $a + \delta$ ()

5. $\lim_{x\to 0}\frac{1}{ x }$ is the prime and the starpe and the starpe of th	. 8
of the square is	
(a) 0 () s\mo 7:0 (n)	
(b) ∞ () a (d)	
(c) -∞ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
(d) None of the above ()	
6. If RHL = LHL $\neq \lim_{x \to \infty} f(x)$, then $f(x)$ is said to have a	
(a) discontinuity of first kind ()	
(b) discontinuity of second kind ()	
(c) mixed discontinuity ()	
(d) removable discontinuity ()	
7. If $y = \sin x^3$, then $\frac{dy}{dx} = \frac{1}{2} \left(\frac{dy}{dx} \right)$	
(a) $3x^2 \cos x^3$ () $3x^2 \cos x^3$ ()	
(b) $3x^2 \sin x^3$ () $0 + (x gol) \frac{1}{2}$ (d)	
(c) $3x^2 \cos x^2$ ()	
(d) $3x^2 \sin x^2$ () () $(x^2 + x^2) \cos x \cos x$	
Ba/Bs/MAT/M1/114	

8.	0.2	side of a sem/s. Then ne square is	the rat	is in e of i	creasing ncrease o	at the rate f the perim	e of a
	(a)	0.7 cm/s	()			
	(b)	0.8 cm/s	()			
	(c)	0.6 cm/s	()			
	(d)	0.4 cm/s	(())		None of the	
9.	The	value of \int_{S}^{-1}				STOREST	
	(a)	$\cot x - \tan x$	x + c	t kin	ity of firs		
	(b)	$\cot x + \tan x$		I bro	ity of sec	discontinu	
	(c)	tan x - sec		(ontingity		
	(d)	$\tan x + \sec$	x + c	7 (ait)oosib		
10	. The	e integral \int_{-1}^{1}	$\frac{\log x}{x} dx$	c has	the value	ein Canle	
	(a)	$\frac{1}{2}(\log x)^2 +$	- c	()))		
	(b)	$\frac{1}{2}(\log x) +$	c	()			
	(c)	$(\log x)^2 + \epsilon$	e koon	()			

 $(\log x) + c \qquad (1)$

(d)

SECTION—II

(Marks : 5)

1×5=5
1. Logarithmic function is not defined for
2. The function $f(x) = \sqrt{x-1} + \sqrt{5-x}$ is defined at
3. The derivative of log (log x) is
4. The value of $\int e^x \{f(x) + f'(x)\} dx$
is
5. If $f(x_0 + 0)$ and $f(x_0 - 0)$ both exists and are equal but this equal value is not equal to $f(x_0)$ is called
Ba/Bs/MAT/M1/114

SECTION—III

(Marks: 10)

Answer the following questions (any five):

 $2 \times 5 = 10$

 Indicate true or false with a Tick (✓) mark and give justification.

If $f:R \to R$ be defined by $f(x) = x^2 - 3x + 2$, then $f \circ f:R \to R = I_R$.

but this equal value is not equal to f(an) is

True () False ()

Justification: *** The state of the state of

 Indicate true or false with a Tick (✓) mark and give justification.

If $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 3x + 2, then its inverse $f^{-1}: \mathbb{R} \to \mathbb{R}$ is defined by $f^{-1}(x) = \frac{x-2}{3}$.

True () False ()

Justification:

BE/EstMithilists

3. Discuss the continuity of f(x) = |x| at x = 0.

4. Find $\frac{dy}{dx}$ if $y = \sec(\tan^{-1} x)$.

and $f'(x) = 3x^2 + 2x - 16$

BAYBS/MAT/MI/1144

5. Find the GCD of
$$f(x) = x^3 + x^2 - 16x + 20$$
 and $f'(x) = 3x^2 + 2x - 16$

6. Evaluate $\int \frac{x}{x^4 - 9} dx$.